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Self-accelerating Dirac particles and prolonging
the lifetime of relativistic fermions
Ido Kaminer1,2*, Jonathan Nemirovsky1, Mikael Rechtsman1, Rivka Bekenstein1 and Mordechai Segev1

The Aharonov–Bohm e�ect predicts that two parts of the electron wavefunction can accumulate a phase di�erence even
when they are confined to a region in space with zero electromagnetic field. Here we show that engineering the wavefunction
of electrons, as accelerating shape-invariant solutions of the potential-free Dirac equation, fundamentally acts as a force
and the electrons accumulate an Aharonov–Bohm-type phase—which is equivalent to a change in the proper time and is
related to the twin-paradox gedanken experiment. This implies that fundamental relativistic e�ects such as length contraction
and time dilation can be engineered by properly tailoring the initial conditions. As an example, we suggest the possibility of
extending the lifetime of decaying particles, such as an unstable hydrogen isotope, or altering other decay processes. We
find these shape-preserving Dirac wavefunctions to be part of a family of accelerating quantum particles, which includes
massive/massless fermions/bosons of any spin.

In 1958, Aharonov and Bohm (AB) predicted that two parts
of the wavefunction of an electron can accumulate a phase
difference even when they are confined to a region in space with

zero electromagnetic (EM) field1. The AB effect proved that the
EM vector potential is a physical entity (up to a gauge change),
affecting the outcome of experiments directly, not only through the
fields derived from it. The effect was later generalized by Berry
to general topological effects2 and observed in many experiments.
Recently, an AB effect was observed for photons, which cannot
interact with an EM potential, but instead are affected by an
effective magnetic field created through temporal modulation of
the refractive index3–5. Analogous pseudofield effects also occur
in other areas, ranging from gravitation6,7 and solid state8–12 to
photonics11–13 and cold atoms14–17, where engineered topology can
create effective EM potentials. Such effective potentials can often be
probed directly, even including their gauge, as they are artificial. It
is now clear that a real EM potential is no longer required for an
AB-type effect. But, can such effect exist even without structure, in
free space?

Paul Dirac’s inspiring quotation, ‘God used beautiful mathemat-
ics in creating the world’, is manifested time and again in science,
not least in the equation Dirac himself derived to describe the wave
motion of relativistic particles18. Dirac’s equation introduced the
fermionic spinor and predicted antimatter, and its generalizations
described the dynamics of a large variety of quantum particles. For
decades, however, Dirac fermions and their associated phenomena
(for example, Klein tunnelling) remained in the realm of high-
energy physics and were not observed in experiments. In recent
years, research on graphene has introduced a new kind of system
described by the Dirac model19. The same model is also found in
novel artificial materials such as honeycomb photonic lattices20,
bosonic condensates modulated by optical lattices21,22, and other
forms of ‘artificial graphene’21,23,24, having a Dirac cone band struc-
ture corresponding to massless Dirac particles. Further Dirac-like
dynamics associated with massive Dirac particles is now found in
hyperbolic metamaterials25,26. The common principle underlying
Dirac-like systems is their unusual band structure, which exhibits
two bands intersecting at a single point. In the vicinity of the

intersection point, the band structure is conical (or hyperbolic),
therefore wavepackets residing near this point obey the massless (or
massive) Dirac equation. As a consequence of these modern realiza-
tions of the Diracmodel, a variety of intriguing physical phenomena
have been observed and proposed: Klein tunnelling21,27, negative
magnetoresistance28, conical diffraction20, the quantum Hall effect
at room-temperature and Berry phase effects in graphene8. In recent
years, further effects arising from the Berry phase were found in
a variety of settings, including various Dirac models, honeycomb
lattices, plasmonic structures, harmonically modulating photonic
systems, and more3–7,29. In all of these, the geometrical properties
of the Hamiltonian in some parameter space include a singular-
ity, which contributes a non-trivial phase factor when encircled.
Specifically, for optical beams in three-dimensional (3D) free space,
Berry’s phase in 3D can attain any value between 0 and 2π (ref. 30).
However, even in that simple scenario, the mirrors used in the
optical system create the non-trivial geometry responsible for the
non-zero Berry phase.

Here, we predict self-accelerating Dirac wavepackets exhibiting
accumulation of Berry phase as a direct outcome of their own
dynamics in 2D flat free space.We show that such unusual dynamics
of Dirac wavepackets mimics the dynamics of free charges under
the influence of a true EM field: accelerating even though no field
is acting on them, with the entire dynamics resulting from their
initial conditions. We find that these geometric phase effects carry
over to 3D, and also occur for many kinds of wavepackets obeying
scalar wave equations such as the Helmholtz, Klein–Gordon and
Schrödinger equations. In all of these, a non-trivial geometric
phase can be accumulated even when the system has no physical
geometry or potential whatsoever. This exciting effect is a unique
property of the most intriguing family of wavefunctions: self-
accelerating wavepackets.

Research on self-accelerating wavepackets has developed rapidly
since its introduction into optics31. In optics, an ideal paraxial
accelerating beam follows a parabolic trajectory while preserving its
structure indefinitely as a non-diffracting wavepacket. This effect
arises from interference: waves emitted from all points maintain
a propagation-invariant structure that shifts laterally on a curved
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trajectory. Consequently, the wavepacket actually accelerates itself
by means of interference. Note that the total momentum carried by
these accelerating solutions is conserved, even though every local
part of the wavefunction is accelerating. There is no contradiction,
because any decaying envelope that ensures the energy is finite
also restricts the acceleration to occur over a finite range in
space and time. Physically, what matters are the local effects
(which depend on the local wavepacket), because measurements
are always carried over a finite range. This phenomenon has
led to many intriguing ideas, ranging from particle guidance
along curves32, curved laser-induced plasma channels33, accelerating
temporal pulses in dispersive media34, and even self-trapped shape-
preserving accelerating beams in nonlinear optics35–37. Furthermore,
the recent discovery of self-accelerating beams of the Maxwell
equations38 has led to the insight that accelerating wavepackets
are a universal phenomenon, common to very many wave systems
in nature: including general EM fields, time-harmonic acoustic,
elastic and surface waves in fluids, and even EM waves in curved
space39. The same concept applies in quantum mechanics, where
recently the wavefunction of a single electron was shaped to yield
an accelerating electron wavepacket40. Notably, ref. 40 was the
first observation of any self-accelerating quantum wavepacket, in
the spirit of the original prediction of Berry and Balasz41. In
all of these systems, irrespective of their physical settings—the
basic property of the accelerating wavepacket is common to all:
the wavepacket moves as if it is under the influence of a force,
or a linear ‘effective potential’ (as discussed in early works on
this subject31,41).

In what follows, we present shape-preserving accelerating
wavepackets governed by the Dirac equation. We show that such
wavepackets mimic the properties of particles moving under the
influence of a real potential, not only in following exactly the same
acceleration trajectories but also in exhibiting relativistic effects
such as time dilation and space contraction. Most importantly,
owing to the shape-preserving property, these relativistic effects
correspond to an AB phase, which was thus far considered
to be restricted to systems where true potentials or particular
structure must be present. Thus, any measurements taken along
the trajectory cannot distinguish between a true potential and
this ‘effective potential’, whose action is engineered through the
initial conditions of the wavepacket. The effects of this virtual
force are measurable to the same extent as any physical force.
This conceptual insight emphasizes the importance of this ‘effective
potential’—it gives a complete model that explains all effects
along the trajectory of the wavepacket, and therefore has direct
implications inmany quantum systems. For example, an engineered
wavepacket of a muon can have longer lifetime thanks to the
time dilation we find here. In a similar vein, any radioactive
decay process may be altered by proper preparation of the initial
quantumwavepacket. These phenomena can be observed in various
settings, for example, optical waves in honeycomb photonic lattices
or hyperbolic metamaterials, and matter waves in honeycomb
interference structures. To understand the implications of this
‘effective potential’, we begin by deriving the self-accelerating
Dirac wavepacket.

Consider a positive energy plane-wave solution ψv=0 of the free
space Dirac equation, which describes a plane wave of velocity
zero (v=0)

i}γ µ∂µψ−mcψ=0 ψv=0=


0
−1
0
1

ei mc
} ct (1)

where m is the mass of the electron, c is the speed of light, ~ is
Planck’s constant, t is time, and γ µ are the 4× 4 gamma matrices

in the Weyl basis. The concept described here holds for any spatial
dimension. For simplicity, we describe the case of a single spatial
dimension, where equation (1) translates to −mc i}

(
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)
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where ψ =ψ(z , t) is a spinor describing the electron and ψ2,ψ4
are the two components of the spinor. In this setting of one
spatial and one temporal dimension, the other pair of components
(ψ1,ψ3) is fully degenerate with ψ2,ψ4. Boosting ψv=0 along the
z-direction yields another plane wave with a phase front evolving
along [ct cosh(b)− z sinh(b)]mc/~, which corresponds to velocity
v = c tanh(b), or equivalently γ = cosh(b). These can also be
conveniently described by the Rindler coordinates, or hyperbolic
coordinates (see Supplementary Section VI, for further discussion
on the choice of coordinates). The natural way to construct an
acceleratingwavepacket is to superimpose all such planewaves, with
appropriate relative phase:

9α(z , t)=
∫
∞

−∞

eiαbh(b)boostb {ψv=0}db

=

∫
∞

−∞

 0
−e−b/2

0
eb/2

eiαbh(b)ei mc
} cosh(b)ct−i mc

} sinh(b)zdb (3)

where α is a parameter controlling the relative phase, directly
relating to the acceleration, and h(b) is a decaying envelope function
we introduce to ensure that the total probability is unity. Unlike
the Airy beams, which are not square-integrable (hence cannot
represent a probability function31,41), here 9α has a finite extent in
space, and any decaying envelope would suffice for spin 1/2 (spin
zero requires no decaying envelope at all). Figure 1a shows the 1D
wavefunction accelerating along the z direction while exhibiting a
shape-preserving form that increases its velocity, moving along a
hyperbolic trajectory.

We now focus on the new physics revealed by these accelerating
Dirac particles, while not concentrating on describing the
underlying mathematics. We note, however, that there is also
considerable beauty in these accelerating solutions: their structure,
trajectory and exotic mathematical features, such as the singular
point they all exhibit (see Supplementary Section VI for the
relation of these wavepackets to the modified Bessel function of
the second kind of imaginary order, which can explain many of
the mathematical features). We emphasize that our solutions show
for the first time that there exist accelerating shape-preserving
solutions of theDirac equation, in 1D, 2D and 3D. Themethodology
of generalizing to more than 1D is described in Supplementary
Section I. For further details and comparison to other accelerating
wavepackets see Supplementary Sections II and III.

This construction in equation (3) yields a wavepacket 9α

(Fig. 1a) that is ‘boost invariant’—that is, an observer moving
at any velocity along the z axis sees the exact same wavepacket
up to a phase boostb{9α} = exp(ibα)9α . This ‘boost invariance’
is what causes the wavepacket to behave as a self-accelerating
particle: it explains the self-acceleration and the tendency of the
wavepacket to preserve its shape. Without this shape-preserving
feature (that is, if the wavefunction varies during evolution)
it would be difficult to associate the physical behaviour of
the wavepacket with acceleration31 and—most importantly—with
acceleration of a physical particle (for discussion on non-shape-
preserving accelerating wavepackets see Supplementary Section II).
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Figure 1 | Accelerating Dirac particles. Expectation value of the charge density ρ(z, t)=|91
α |

2
+|92

α |
2
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α |
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α |
2 of a self-accelerating Dirac

wavepacket9α , exhibiting space contraction and shape-preserving dynamics. An observer moving at any velocity along the z axis sees the exact same
wavepacket up to a phase boost. In all plots, α=80 and h presents truncation for b=±5 (in a,c) or b=±3 (in b,d). Bright colours represent higher charge
densities (the colourbar is saturated for presentation clarity). The singular point is where the oscillations of the wavefunction reach an infinite rate, causing
part of the density to scatter to the left, ensuring momentum conservation. a, The 1+1D case, given by equation (3). The singular point emits the
left-propagating part of the wavefunction. This occurs owing to the finite extent of the envelope h, which limits the range for which the propagation is
shape-preserving. The white arrows signify the spatial contraction due to the relativistic speeds. b, Accelerating wavepacket of the Dirac equation in
2+1D, at t=0. a.u., arbitrary units. c, Accelerating wavepacket of the Klein–Gordon equation (spin 0) in 3+1D. Shown is the cross-section at t=0.
d1–d3, Snapshots of the cross-section of an accelerating wavepacket of the Dirac equation in 3+1D at three consecutive times ((t0, t1, t2)=0,5, 10 in units
of λCompton/c).

Figure 1b–d presents examples of acceleratingDirac wavepackets
of higher dimensions. Figure 1b presents the solution for 2+1D,
at t = 0. Figure 1c presents the solution of the Klein–Gordon

equation for 3+1D, at t=0. Figure 1d shows solutions in two spatial
dimensions and time (henceforth 3+1D), at three consecutive times
(t0, t1, t2), exhibiting the contracted-length and shape-preserving
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Figure 2 | The ‘twin-paradox’ gedanken experiment. a, The proper times of
the two twins are marked on the probability density plot, showing a
di�erent amount of time that passes for each twin (seven phase cycles of
2π versus nine cycles). b, Trajectory of a particle under the influence of a
force—emphasizing the equivalence between the accelerating Dirac
wavepacket and the true particle, in terms of the trajectory, relative time
dilation and AB phase. For this plot we choose α= 12 and h that presents
truncation in b=±5.

evolution, as in Fig. 1a. These examples show how rich the
behaviour of accelerating Dirac wavepackets can be in 2D and
3D (see Supplementary Section I for further details). However, they
all exhibit the same basic properties, such as the singular point
in Fig. 1a, which is shown in the other panels (b–d) as a dashed
yellow line. The singular point emits the left-propagating part
of the wavefunction, which occurs owing to the finite extent of
the wavepacket. This finite extent has two implications: it sets
a finite limit on the range for which the wavepacket exhibits
shape-preserving acceleration, and it explains how momentum
is conserved while the wavepacket is accelerating. Namely, the
left-propagating part balances the momentum of the rest of the
wavepacket, which is accelerating to the right.

Let us now discuss the physical meaning of these exotic particles,
and show they exhibit the behaviour of ordinary accelerating
particles. Describing these particles as waves allows engineering
the wavepacket so as to control relativistic properties, altering
the proper time, and causing length contraction. To do that,
we introduce hyperbolic coordinates, which are best suited to
describe the dynamics in the relativistic accelerating frame:
(z ,ct)=(Rcosh(τ c/R),R sinh(τ c/R)), where R is the hyperbolic
radius (c2t 2= z2

+R2) and τ c/R is the hyperbolic phase, which is
a convenient notation as τ is exactly the proper time of a particle
accelerated to relativistic speeds along this hyperbolic trajectory. By
transforming the spinor wavefunctions (just ψ1,ψ3 in the 1+1D
case) to these coordinates, one can show that R describes the
hyperbolic trajectory on which each of the lobes of the accelerating
wavepacket evolves. Importantly, the evolution of the wavepacket in
these coordinates is shape-preserving: each lobe is strictly stationary
on a specific value of R, whereas the main lobe (rightmost in all
panels in Fig. 1) satisfies R∼ (α~)/(mc), with the approximation
becoming exact for α� 1. Even more importantly, each of the
spinor’s wavefunctions (ψ1,ψ3) accumulates a phase α asinh(ct/R)
which can be expressed using the proper time as ατ c/R. We note
that τ is not just a convenient notation; rather, in the absence of
any external potential, the accumulated phase is proportional to
the particle’s proper time along a fixed hyperbolic trajectory, hence

τ is a measure of the clock of our accelerating wavepacket. This
insight is analogous to the ‘twin-paradox’ gedanken experiment
proposed by Einstein42. Namely, we launch a self-accelerating Dirac
particle (described by 9α(z , t =−t0)) with initial velocity to the
left but acceleration to the right. At the same initial time t =−t0,
we position another Dirac particle at the same initial position at
rest. We then let the dynamics evolve according to equation (1)
or (2), and measure the difference in the clocks of such particles
when they meet again at t = t0 (left panel in Fig. 2). We find the
difference in their clocks to be 2t0 − 2tα asinh(ct 0/R), where we
use the notation tα = (α~)/(mc2), which equals α divided by the
Compton frequency. Interestingly, as in the ‘twin-paradox’, there
is a difference in their clock times, which means that less time
has passed for the accelerating Dirac wavepacket that has gone
through the longer path in spacetime. For α�1, the difference in
clock times can be written as 2t0−2tα asinh(t0/tα), which exactly
matches the proper time difference of a relativistic particle that
moves along the same trajectory as the accelerating wavepacket
does. This interesting ‘coincidence’ is an indicator of a much
deeper phenomenon: we argue that when the interference of the
accelerating wavepacket creates an accelerating trajectory, it also
induces a fictitious force acting on itself along that trajectory: the
force that ‘would have been there’ to accelerate a true particle along
this trajectory. Thus, the acceleration of the wavepacket is more
than ‘just’ interference. Rather, the interference effect, arising strictly
from the initial conditions on the wavepacket, induces a fictitious
force acting on the wavepacket as if it were a true particle, with all of
the accompanying effects it causes. In a broader perspective, just as
the Aharonov–Bohm effect has proved that the EM vector potential
is a true physical entity, the inevitable outcome of our findings here is
that ‘self-acceleration’ acts as a force even though there is no external
potential in the system whatsoever.

To show that indeed the wavepacket evolves as if a force
were exerted on it, we calculate the EM potential Aµ that would
normally cause the phase pattern we see along the trajectory.
To achieve that, we perform the reverse calculation of the
AB phase

1ϕ=
q
}c

∫
trajectory

Aµdxµ (4)

By using the expression of the phase along the trajectoryατ c/R from
above, and the shape-preserving property—which is essential for
this argument—we find that only the following potential can satisfy
equation (3) along the trajectory (further details in Supplementary
Section IV):

(qA0,qA3)=(Rcosh(τ c/R)−τ c sinh(τ c/R),

τ c cosh(τ c/R)−R sinh(τ c/R))~cα/R2 (5)

where q is the charge associated with the wavepacket. Notice that
the effect is independent of the charge q. Finally, deriving the fields
from this induced potential, we obtain a constant electric field in
the lab frame: qE=−ẑ~cα/R2. Strikingly, substituting the relation
α ∼mcR/~ (satisfied around the main lobe of the wavepacket),
we find qE = −ẑmc2/R, which is the force that accelerates a
particle along the same (hyperbolic) relativistic trajectory, while
experiencing the same time dilation, as our accelerating Dirac
wavepacket. Furthermore, this force is exactly the ratio of the
electron rest energy (mc2) to the trajectory radiusR. For a discussion
about extending this result to the side lobes of the wavepacket,
see Supplementary Section V. A direct conclusion from equations
(4) and (5) and Fig. 2 is that the phase accumulated along the
trajectory, α asinh(ct/R), is a type of AB phase (formally, it is a
type-II AB effect because the particle is subject to a non-vanishing
field; still, the same (equation (4)) describes the AB phase43).
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Figure 3 | Extending the lifetime of an unstable particle through self-acceleration. a, Probability density of a decaying self-accelerating wavepacket,
compared with that of a stationary decaying particle. This example is for spin 0, α=300, truncation h at b=±2. The mass m1 and mean lifetime τ1
represent the hydrogen isotope 7H, which has a very short lifetime (imaginary-to-real energy ratio ~/(2m1c2τ1)= 1.69× 10−5). b, The corresponding
probability density decay of the first seven lobes as a function of time in the lab frame (blue curves), compared with the decay of the stationary particle
(red curve). The stationary particle decays faster than the lobes of the accelerating wavepacket—its exponential decay corresponds to lifetime
τ=39.8~/(m1c2) whereas the lifetime of the main lobe of an accelerating 7H wavepacket is τ=59.2~/(m1c2), representing a 128% change in probability
density over a time span of τ= 100~/(m1c2). c, Two zoomed-in sections of an accelerating wavepacket of spin 1/2, α=8,000, and truncation h at b=±2.
The mass m2 and mean lifetime τ2 are of the Higgs boson, which has imaginary-to-real energy ratio of ~/(2m2c2τ2)=0.002. The lifetime of the main lobe
is longer than that of the stationary lobe by more than a factor of three (τ= 14,325~/(m2c2), τ=4,742~/(m2c2) respectively), representing a 103% change
in probability density over a time span of τ=5,010~/(m2c2).

As such, the phase difference in a scenario such as Fig. 2 is
2t0mc2/~−2α asinh(t0/αmc2/~)).We emphasize that this AB effect
is relativistic, because it results from the hyperbolic coordinates.
The implication of this result is profound: an AB-like phase can be
accumulated in the absence of any EM potential and without any
geometry to emulate an effective potential. That is, engineering the
initial conditions of the wavepacket is all that is required to generate
an AB phase. This has a fascinating implication—engineering the
initial conditions not only creates an effective acceleration and
phase accumulation, but can also affect the properties of relativistic
particles. Belowwepresent an example showing that engineering the
initial conditions to create a self-accelerating wavepacket extends
the proper time of a decaying Dirac particle, thus prolonging
its lifetime.

When a quantum state has a finite lifetime, it can be
phenomenologically expressed by an exponentially decaying
wavefunction—that is, assigning an imaginary part to the energy
of this state44. Examples include, but are not limited to radioactive
decays, excited two-level systems, atoms, molecules and quantum
dots, coupled to the environment or decaying through tunnelling,

gradually deteriorating condensates, coupled waveguide systems,
and decaying fundamental particles such as muons and neutrons.
For our case of the Dirac equation (that actually describes
many of these systems), one adds the finite lifetime by replacing
mc/~→mc/~+ i/(2τ0c). In this modified Dirac equation the new
parameter τ0 represents the mean lifetime of the particle when it is
at rest. To clarify this, consider a particle with velocity v=βc. Such
a particle is described by a plane-wave solution of the modified
Dirac equation (modified equation (1)):

i}γ µ∂µψ−
(
mc+

i}
2τ0c

)
ψ=0

ψv=βc=


0
−e−b/2

0
eb/2

exp
((

imc2

}
−

1
2τ0

)(
γ t−βγ

z
c

)) (6)

where to relate to the hyperbolic coordinates we use γ = cosh(b)
and β= sinh(b). When calculating the probability density, we are
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left with exp(−γ t/τ0), which reveals that the lifetime is extended by
a factor of γ—as expected.

To study the evolution of self-accelerating wavepackets in the
modified Dirac equation, we use the same initial conditions
introduced in equation (3) (which led to Figs 1a and 2).
The evolution of this decaying–accelerating Dirac wavepacket
is presented in Fig. 3a. It still contains the familiar features
of acceleration from the above figures; however, it also shows
pronounced decay. To compare this wavepacket to a stationary
Dirac particle, we plot the probability of a plane-wave solution
with v = 0 as a horizontal line with gradually changing colour in
Fig. 3a. Having both the self-accelerating particle and a stationary
particle is the exact same configuration as the twin-paradox shown
in Fig. 2—where we showed an AB-type phase difference, and a
difference in the proper time. Figure 3b reveals a difference in the
decay patterns between the two wavepackets, manifested in the
comparison between the evolutions of the probability densities as
a function of z . This clearly shows that the self-accelerating Dirac
wavepacket slows down the decay of the main lobe, thus prolonging
its lifetime. The slower decay is of course a local phenomenon,which
we measure for each lobe individually. However, even being a local
phenomenon, it does not require the other lobes to compensate
for the slowed-down decay of the main lobe by exhibiting a faster
decay. Instead, we find that the decay of the side lobes is also
slower (Fig. 3b). There is no conservation law for the proper time
or for the total decay rate, hence the entire wavepacket can indeed
decaymore slowly, exhibiting an extended lifetime—time dilation—
without contradicting any law of nature.

For the two examples presented in Fig. 3, we chose particles
with very short lifetimes. Because equation (6) can be scaled with
respect to its mass, the only quantity that matters is the ratio
between the imaginary and real parts of the rest energy. We chose
1.69×10−5 for Fig. 3a,b and 2×10−3 for Fig. 3c,d, corresponding to
the hydrogen isotope 7H and the Higgs boson, respectively. These
particles have such a short lifetime that they cannot be considered
stable particles, but are referred to as propagating resonances, which
means they exist only as intermediate states in some scattering
process in a particle physics experiment. We emphasize that even
in such an extreme scenario, shaping these wavepackets still has a
practical meaning: the measurements carried out on the final state
emitted from the process will be altered in response to a change
in the properties of the resonant-state particle. In reality, such an
effect can be realized by engineering the wavefunction of one of
the initial particles starting the scattering process. This will shape
the wavefunction of the intermediate state, which will affect the
properties of the emerging state.

Clearly, the effective force induced by the self-accelerating
wavepacket exhibits the intriguing additional feature of altering
its lifetime. This prolonged lifetime agrees with the time dilation
discussed above, just as expected from ordinary particles moving at
relativistic speeds. But unlike ordinary particles, the slowed-down
decay happens without an external force. We showed that although
the self-acceleration is the result of interference of the wavepacket’s
constituents, the implication affects far more than just the phase
of the wavepacket. This AB-like phase effect causes changes to the
decay rate, which proves that it affects relativistic properties of the
particle, such as its proper time.

Before closing, it is important to discuss the possibility of
testing our findings in experiments. There are a number of
different platforms for achieving this. For example, photonic
crystal slabs have been shown to exhibit hyperbolic dispersion
akin to Dirac physics45. Therefore, launching shaped pulses
into such a spatially varying dielectric environment will allow
the observation of the Aharonov–Bohm phase and the time
dilation described here. Namely, the light propagating on a longer
trajectory will experience a smaller time dilation, as presented in

Fig. 2. Alternative experiments include monitoring the temporal
dynamics in exciton-polariton condensates24 and ultracold atoms22,
both in honeycomb lattices, with proper preparation of the
initial wavefunction.

Interestingly, the AB phase and the time-dilation effects can also
potentially be observed with actual electrons. Temporal shaping
of the electronic wavefunction would require methods relying on
ultrafast electron microscopy46 plus shaping the optical excitation
pulse. Here, a specifically shaped laser pulse hitting a photocathode
will generate a short single-electron pulse imprinted with the
structure described in equation (3). An alternative method is to
directly shape the already accelerated relativistic electron beam.This
can be done using a holographic mask, relying on the variation in
phase delay experienced by high-velocity electrons passing through
a mask patterned to have a varying thickness on the nanoscale40.
Thismethod requires an additional step, because spatialmodulation
of the phase has to be translated to temporal shaping in z–t ,
giving a different phase and amplitude to different electron wave
constituents of different velocity. Indeed, splitting different velocity
components to different transverse translations is readily done by
magnetic fields acting as prisms for electrons, and magnetic lenses.
For further details and parameter estimates see Supplementary
Section VII. An additional realization in a different platform would
be the spatial analogue of the AB phase and the time-dilation
effects. This can be directly observed in various photonic systems,
exploiting the mathematical analogy between space and time: if
one space coordinate takes the place of the temporal coordinate,
then acceleration becomes equivalent to ‘beam bending’. Thus, a
spatial AB phase can be observed in honeycomb photonic lattices20,
hyperbolic metamaterials25, or biaxially birefringent crystals47. In
such spatial systems, the AB phase and time-dilation effects would
manifest in the fact that an optical beam propagating at a longer
trajectory will accumulate phase at a slower rate, counter to Fermat’s
principle. Altogether, we envisage a number of viable techniques,
across many platforms, which would achieve the Aharonov–Bohm
phase and time-dilation effects predicted here.

The insight that a Dirac self-accelerating wavepacket mimics all
properties of a force acting on a charged particle calls for another
fundamental question, which we leave open for future work: does
a self-accelerating single-electron wavepacket emit radiation? On
the one hand, one would naively expect an accelerating particle
to radiate; but on the other hand, there is no force acting on
the particle, meaning that its overall energy is constant. This and
many other questions arise from accelerating particles in free
space, because they challenge our closely held intuition about
relativistic dynamics.
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